Cytoprotective doses of erythropoietin or carbamylated erythropoietin have markedly different procoagulant and vasoactive activities.
نویسندگان
چکیده
Recombinant human erythropoietin (rhEPO) is receiving increasing attention as a potential therapy for prevention of injury and restoration of function in nonhematopoietic tissues. However, the minimum effective dose required to mimic and augment these normal paracrine functions of erythropoietin (EPO) in some organs (e.g., the brain) is higher than for treatment of anemia. Notably, a dose-dependent risk of adverse effects has been associated with rhEPO administration, especially in high-risk groups, including polycythemia-hyperviscosity syndrome, hypertension, and vascular thrombosis. Of note, several clinical trials employing relatively high dosages of rhEPO in oncology patients were recently halted after an increase in mortality and morbidity, primarily because of thrombotic events. We recently identified a heteromeric EPO receptor complex that mediates tissue protection and is distinct from the homodimeric receptor responsible for the support of erythropoiesis. Moreover, we developed receptor-selective ligands that provide tools to assess which receptor isoform mediates which biological consequence of rhEPO therapy. Here, we demonstrate that rhEPO administration in the rat increases systemic blood pressure, reduces regional renal blood flow, and increases platelet counts and procoagulant activities. In contrast, carbamylated rhEPO, a heteromeric receptor-specific ligand that is fully tissue protective, increases renal blood flow, promotes sodium excretion, reduces injury-induced elevation in procoagulant activity, and does not effect platelet production. These preclinical findings suggest that nonerythropoietic tissue-protective ligands, which appear to elicit fewer adverse effects, may be especially useful in clinical settings for tissue protection.
منابع مشابه
Development of Non-erythropoietic Erythropoietin Variants for Neuroprotection
Erythropoietin is well known to possess erythropoietic activity, but also tissue protection. Here, we present examples on how to separate these two activities. One possibility is to generate a short-lived variant by removal of EPO’s sialic acid residues. Although asialo-EPO has a high affinity for the classical EPO-R, it lacks hematopoetic activity in vivo upon bolus injection, because of its s...
متن کاملCorrection to: “Carbamylated Erythropoietin: A Prospective Drug Candidate for Neuroprotection”
Carbamylated erythropoietin (cEpo), which is neuroprotective but lacks hematopoietic activity, has been attracting rising concerns. However, the cellular and molecular mechanisms involved in the process of neuroprotection of cEpo are not well known. Based on several recent reports, the neuroprotective effects of cEpo are illustrated, and signaling pathways involved in the different effects of e...
متن کاملProtective effect of erythropoietin and its carbamylated derivative in experimental Cisplatin peripheral neurotoxicity.
PURPOSE Antineoplastic drugs, such as cisplatin (CDDP), are severely neurotoxic, causing disabling peripheral neuropathies with clinical signs known as chemotherapy-induced peripheral neurotoxicity. Cotreatment with neuroprotective agents and CDDP has been proposed for preventing or reversing the neuropathy. Erythropoietin given systemically has a wide range of neuroprotective actions in animal...
متن کاملDerivatives of erythropoietin that are tissue protective but not erythropoietic.
Erythropoietin (EPO) is both hematopoietic and tissue protective, putatively through interaction with different receptors. We generated receptor subtype-selective ligands allowing the separation of EPO's bioactivities at the cellular level and in animals. Carbamylated EPO (CEPO) or certain EPO mutants did not bind to the classical EPO receptor (EPOR) and did not show any hematopoietic activity ...
متن کاملCombination Antioxidant Effect of Erythropoietin and Melatonin on Renal Ischemia-Reperfusion Injury in Rats
Objective(s): Renal ischemia reperfusion (IR) contributes to the development of acute renal failure (ARF). Oxygen free radicals are considered to be principal components involved in the pathophysiological tissue alterations observed during renal IR. The purpose of this study was to investigate the effect of co-administration of melatonin (MEL) and erythropoietin (EPO), potent antioxidant and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 15 شماره
صفحات -
تاریخ انتشار 2006